"A escala mundial, no existe diferencia de género en el rendimiento matemático". Esta es la conclusión de Jonathan Kane y Janet Mertz, dos investigadores de la Sociedad Americana de Matemáticas (AMS). Hicieron el estudio con el objeto de erradicar el mito de la inferioridad en matemáticas del sexo femenino. Publicaron un informe comparando datos mundiales del rendimiento por género en esta ciencia ("Debunking Myths about Gender and Mathematics Performance". Notices of the American Mathematical Society), y esta es la conclusión.Yo ya lo sabía...
Ver artículo completo
Saludos.
ALICIA
Este blog trata de ser un punto de encuentro con mis alumn@s del IES Arcipreste de Hita. Pretendo darle un contenido lúdico, porque las Matemáticas pueden serlo. Además, lo utilizaré como herramienta didáctica. Todo ello con vuestra ayuda.
"La mayor parte de las ideas fundamentales de la ciencia son esencialmente simples, y deben, como regla, ser expresadas en un lenguaje que cualquiera pueda comprender". A. Einstein
Etiquetas
2014/15
(38)
Curiosidades
(29)
Igualdad
(7)
Primero ESO
(51)
Sección Europea
(86)
Técnicas de estudio
(7)
Tercero ESO
(34)
viernes, 23 de diciembre de 2011
Negative number tales
I would like you to write a Math Tale. What is that? These are short stories with a problem to solve. What I suggest you to do is to write a funny math story with a simple problem to solve about negatives. Use negative numbers and negative situations (ex. Temperatures below zero, loans, money, debts, lifts…). Work in pairs. Include your names and stories as a comment, and, of course, solve your problem!
You can see more examples in http://mathtales.ca/stories.html
And here you have a useful dictionary
You can start with: ONCE UPON A TIME... or LONG TIME AGO...
USEFUL VOCABULARY:
Below zero: bajo cero
Loan: préstamo
Credit: crédito
Steal, rob: robar
Lose: perder
Debt: deuda
Go down, decrease: bajar, descender
Go up, increase: subir, aumentar
Climb: escalar
Peak: cima, pico
lift: ascensor
basement: sótano
Enjoy it!
ALICIA
You can see more examples in http://mathtales.ca/stories.html
And here you have a useful dictionary
You can start with: ONCE UPON A TIME... or LONG TIME AGO...
USEFUL VOCABULARY:
Below zero: bajo cero
Loan: préstamo
Credit: crédito
Steal, rob: robar
Lose: perder
Debt: deuda
Go down, decrease: bajar, descender
Go up, increase: subir, aumentar
Climb: escalar
Peak: cima, pico
lift: ascensor
basement: sótano
Enjoy it!
ALICIA
viernes, 16 de diciembre de 2011
Azuqueca defiende la enseñanza pública
Querid@s alumn@s y familias,
Desde la plataforma en Defensa de la Enseñanza Pública de Azuqueca de Henares hemos organizado unas jornadas para poder analizar el futuro de la educación pública en nuestro municipio. Contaremos con la presencia de profesores de los distintos ámbitos educativos, alumnas y AMPAS. Toda la comunidad educativa unida contra los recortes y en defensa de los servicios públicos de calidad.
Os espero mañana.
Un abrazo
ALICIA
Desde la plataforma en Defensa de la Enseñanza Pública de Azuqueca de Henares hemos organizado unas jornadas para poder analizar el futuro de la educación pública en nuestro municipio. Contaremos con la presencia de profesores de los distintos ámbitos educativos, alumnas y AMPAS. Toda la comunidad educativa unida contra los recortes y en defensa de los servicios públicos de calidad.
Os espero mañana.
Un abrazo
ALICIA
domingo, 11 de diciembre de 2011
Negative numbers (I. Whole Numbers, Number line)
Hello boys and girls,
now that the weather is getting colder, it is the best time of the year to study NEGATIVE NUMBERS :-)
These are part of a bigger group, called Whole Numbers.
To study them, the number line is very useful; it may help you to tell which numbers are bigger or smaller. Read about number line by clicking here (remember to solve the six questions down). After that, play this game for a while to see if you really understood...
At the end of the class, if you feel comfortable with number line and operations on it, try with this game, with more difficult movements... Play
Good luck,
ALICIA
now that the weather is getting colder, it is the best time of the year to study NEGATIVE NUMBERS :-)
These are part of a bigger group, called Whole Numbers.
To study them, the number line is very useful; it may help you to tell which numbers are bigger or smaller. Read about number line by clicking here (remember to solve the six questions down). After that, play this game for a while to see if you really understood...
At the end of the class, if you feel comfortable with number line and operations on it, try with this game, with more difficult movements... Play
Good luck,
ALICIA
martes, 22 de noviembre de 2011
Greatest Common Factor and Least Common Multiple
Hello everyone,
As we have already studied what GCF and lcm are, I would like you to go over the definition and improve in calculating both, so please, have a look to the following links:
Greatest Common Factor (GCF) is the highest number that divides exactly into two or more numbers.
Read more about GCF
Practice. More exercises.
Least Common Multiple (lcm) is the smallest (non-zero) number that is a multiple of two or more numbers.
Read more about lcm
Practice. More exercises.
PLAY A GAME
Practice with PROBLEMS
ALICIA
As we have already studied what GCF and lcm are, I would like you to go over the definition and improve in calculating both, so please, have a look to the following links:
Greatest Common Factor (GCF) is the highest number that divides exactly into two or more numbers.
Read more about GCF
Practice. More exercises.
Least Common Multiple (lcm) is the smallest (non-zero) number that is a multiple of two or more numbers.
Read more about lcm
Practice. More exercises.
PLAY A GAME
Practice with PROBLEMS
ALICIA
lunes, 14 de noviembre de 2011
Solid geometry summary
Hi boys and girls,
Here you have the summary I promised, with the six shapes you have to study for the exam.
Download file.
Take care,
ALICIA
Here you have the summary I promised, with the six shapes you have to study for the exam.
Download file.
Take care,
ALICIA
domingo, 6 de noviembre de 2011
Sieve of Eratosthenes
The Sieve of Eratosthenes is an ancient method for finding all primes numbers up to a specified number.
It was created by Eratosthenes (275-194 B.C., Greece), an ancient Greek mathematician. Just as a sieve is a strainer for draining spaghetti, Eratosthenes's sieve drains out composite numbers and leaves prime numbers behind. The numbers from 1 to 100 are listed in a table. We will use The Sieve of Eratosthenes to find all primes up to the number 100 by following the directions below.
Directions:
Download presentation
Questions (to be answered as a comment):
1. How many prime numbers are there from 1 to 100?
2. List all prime numbers from 1 to 100.
3. Which number is the only even prime number?
4. An emirp (prime spelled backwards) is a prime that gives you a different prime when its digits are reversed. For example, 13 and 31 are emirps. List all emirps between 1 and 100.
Enjoy it!
ALICIA
It was created by Eratosthenes (275-194 B.C., Greece), an ancient Greek mathematician. Just as a sieve is a strainer for draining spaghetti, Eratosthenes's sieve drains out composite numbers and leaves prime numbers behind. The numbers from 1 to 100 are listed in a table. We will use The Sieve of Eratosthenes to find all primes up to the number 100 by following the directions below.
Directions:
- Cross out 1 since it is not prime.
- Circle 2 because it is the smallest prime number. Cross out every multiple of 2.
- Circle the next open number, 3. Now cross out every multiple of 3.
- Circle the next open number, 5. Now cross out every multiple of 5.
- Circle the next open number, 7. Now cross out every multiple of 7.
- Continue this process until all numbers in the table have been circled or crossed out.
Download presentation
Questions (to be answered as a comment):
1. How many prime numbers are there from 1 to 100?
2. List all prime numbers from 1 to 100.
3. Which number is the only even prime number?
4. An emirp (prime spelled backwards) is a prime that gives you a different prime when its digits are reversed. For example, 13 and 31 are emirps. List all emirps between 1 and 100.
Enjoy it!
ALICIA
Nets
Hi girls and boys,
Here you have a link where you can find the 3D models (also called "nets") for every 3D shape.
If you want to practice associating nets and figures, go to the following site:
ALICIA
Surface area and Volume, part I
Hi all,
these days we have been working in class with surface area and volume of some geometric shapes. I leave you here some links to go over the most important ones:
Platonic solids (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
Pyramids
Prisms
Cylinder, cones, sphere
Remember that you have to present by the end of this week your work including:
1. Description of your shape
2. Net
3. Surface area and volume
4. Examples in real life
5. Problem
(Deadline: friday, 11th of november)
If you want to practice or get some ideas or pictures, you can find more exercises here:
Surface area of a cube, rectangular prism, pyramids and cones, cylinder, cylinder and prism,
Volume of a cube, rectangular prism, prism and cylinder, triangular prism, cone, pyramid and cone, cylinder, pyramid, sphere
Volume and surface area of sphere
Take care,
ALICIA
these days we have been working in class with surface area and volume of some geometric shapes. I leave you here some links to go over the most important ones:
Platonic solids (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
Pyramids
Prisms
Cylinder, cones, sphere
Remember that you have to present by the end of this week your work including:
1. Description of your shape
2. Net
3. Surface area and volume
4. Examples in real life
5. Problem
(Deadline: friday, 11th of november)
If you want to practice or get some ideas or pictures, you can find more exercises here:
Surface area of a cube, rectangular prism, pyramids and cones, cylinder, cylinder and prism,
Volume of a cube, rectangular prism, prism and cylinder, triangular prism, cone, pyramid and cone, cylinder, pyramid, sphere
Volume and surface area of sphere
Take care,
ALICIA
jueves, 27 de octubre de 2011
Family tree and powers
Here you have the best family trees in 1ºESO DE:
Valentina López:
Laura Patricia Baldera:
María B. Castillejo:
Marina Liñán:
We studied the relationship between powers and ancestors, I write here a brief summary:
Take care,
ALICIA
Valentina López:
Laura Patricia Baldera:
María B. Castillejo:
Marina Liñán:
We studied the relationship between powers and ancestors, I write here a brief summary:
Parents | 2 | 21 | 2 |
Grandparents | 4 | 22 | 2*2 =4 |
Great-grandparents | 8 | 23 | 2*2*2=8 |
Great-great-grandparents | 16 | 24 | 2*2*2*2=16 |
Great-great-great-grandparents | 32 | 25 | 2*2*2*2*2=32 |
Take care,
ALICIA
martes, 25 de octubre de 2011
Modelos de examen PAU
Hola chic@s,
os dejo el siguiente enlace de la Universidad de Alcalá con modelos de examen de la PAU, espero que os sea útil.
Ver enlace.
Saludos,
ALICIA
os dejo el siguiente enlace de la Universidad de Alcalá con modelos de examen de la PAU, espero que os sea útil.
Ver enlace.
Saludos,
ALICIA
Square roots
The opposite of squaring a number is called finding the square root.
A square root of a number is a value that can be multiplied by itself to give the original number.
A square root of 9 is 3, because when 3 is multiplied by itself you get 9.
It is like asking:
What can I multiply by itself to get this?
| To help you remember think of the root of a tree: "I know the tree, but what is the root that produced it?" In this case the tree is "9", and the root is "3". |
Here are some more squares and square roots:
These are the first perfect squares:
It is easy to work out the square root of a perfect square, but it is really hard to work out other square roots.
Example: what is √10?
Well, 3 × 3 = 9 and 4 × 4 = 16, so we can guess the answer is between 3 and 4.
- Let's try 3.5: 3.5 × 3.5 = 12.25
- Let's try 3.2: 3.2 × 3.2 = 10.24
- Let's try 3.1: 3.1 × 3.1 = 9.61
- ...
Getting closer to 10, but it will take a long time to get a good answer!
|
At this point, I get out my calculator and it says: 3.1622776601683793319988935444327 But the digits just go on and on, without any pattern. So even the calculator's answer is only an approximation ! |
The Easiest Way to Calculate a Square Root
| | Use your calculator's square root button! |
(And also use your common sense to make sure you have the right answer)
domingo, 16 de octubre de 2011
¿Por qué las movilizaciones? ¿Es necesaria la huelga?
La Educación es el principal elemento para eliminar desigualdades sociales de origen. Las Administraciones Públicas deben garantizar la existencia de un sistema educativo público de calidad, que no esté sometida a criterios exclusivamente económicos. La educación debe plantearse como una inversión estable y planificada a largo plazo, nunca como un gasto molesto dependiente de factores externos.
Un sistema educativo público de calidad es el mejor aliado para luchar contra el desempleo y la marginalidad, ya que los ciudadanos mejor formados serán aquellos que tengan mejores oportunidades laborales futuras. El mejor instrumento para enfrentarse a futuras situaciones personales y laborales es la cultura.
El presente curso escolar 2011/12 hemos sufrido una importante reducción en el número de profesores en Castilla la Mancha, aproximadamente un 10 % de la plantilla total. Esto se traducirá en:
- Peor atención a nuestros estudiantes. El aumento de horas de clase del profesorado se manifestará en una disminución de las horas disponibles (en adelante serán dos menos cada semana) que se dedican en el centro a la atención a las familias, coordinación de equipos docentes, tutorías individualizadas, atención a la especificidad del alumnado, programas de prevención del abandono, reducción del fracaso escolar y convivencia, guardias con alumnos y seguimiento de la asistencia del alumnado.
- Significativo aumento del desempleo, como consecuencia de la no contratación de personal interino.
- Deterioro de la calidad de la enseñanza pública.
Más información:
Asamblea Docente Guadalajara
Docentes-decentes
Soy pública CLM
Sindicatos de profesorado a favor de las movilizaciones y en contra de los recortes en enseñanza:
FETE-UGT
CCOO
STE-CLM
USO-CLM
Además
Sindicato de Estudiantes
Mathematicians have powers
We usually say that witches, wizards and fairies have powers. What is a Power in Maths? We have three words for the same concept: power, exponents and indices. But, what is that?
In a power, we have two main parts:
1. The exponent of a number says how many times to use the number in a multiplication (2 in the example)
2. The base, that says what number is multiplied by itself (8 in the example)
Try on the following website to multiply any number by itself as many times as you want using exponents: See website
If you want to learn what is the meaning of cubed, squared or index form go to the next link: Click here
Once you know everything about powers, you only have to go over the index laws.
To finish with powers, have a little practice by doing these exercises.
Suscribirse a:
Entradas (Atom)